

In-Time

Intelligent and Efficient Travel Management for European Cities

POLIS Conference 2009 Martin Böhm

Content

- Introduction
- o The Project
- Concept of In-Time
- Key Elements
- Services
- Expected Impacts

GHG-emissions EU-27 by sector – increase/decrease since 1990

Green Paper

Green Paper – Towards a new culture for Urban Mobility [SEC(2007) 1209]:

- Increased traffic in Europe's cities has resulted
 - In chronic congestion (delays, pollution)
 - In a loss of nearly 100 billion Euros per year (1% of the EU's GDP) to the European economy as a result of this phenomenon.
- Urban traffic is responsible for
 - 40% of CO₂ emissions and
 - 70% of emissions of other pollutants arising from road transport

The main policy objectives for transport and travel are to become:

- cleaner,
- more efficient, including energy efficiency
- safer and more secure.

How to address Urban Mobility

Chronic congestions on urban road artery network

Strategies to improve mobility

- Enhancement of the arteries to the third dimension
- Intelligent Transport System (ITS)
 - → Improved Urban Traffic Management
 - Co-modality (change of travel behaviour)

Change of Travel Behaviour

Can be achieved by

- Comfort (short transit, improved waiting time...)
- Reliability (up to date information about delays...)

→ pan-European multimodal Real-Time Travel Information

In-Time – Frame Data

In-Time – Intelligent and Efficient Travel Management for European Cities

- Pilot Typ B for CIP-ICT PSP-2008-2
- Project with 22 Partners, co-ordinated by AustriaTech
- Budget of project: 4,58 Mio EURO, of which 2,29 Mio EURO are funded by the EU
- Kick-off: 1st April 2009
- Duration of project: 3 years

Basic Idea of In-Time

Implementation of a pan-European multimodal Real-Time Travel Information System through the

- implementation of a standardised harmonised interface between operators and service providers,
- aiming at the reduction of the energy consumption of the single traveller by changing his travel behaviour.

In-Time concept

In-Time information delivery

Concept of the RDSS (Regional Data/Service Server)

TISPs get requests from their User Groups, fetch and merge relevant data from RDSS and provide them to their User Groups

RDSS "translates" different data into a standard format and provides them on a harmonized, standardised level to Transport Information Service Providers (TISPs)

Infrastructure Operators (Road, PT,...)
provide continuously up-dated data
and services on an agreed data/service
quality

Architectural concepts

In-Time system: a distributed architecture (SOA)

End-User Services

Dynamic Multimodal Journey Planning

Mandatory Core Service

- static road traffic information
- dynamic road traffic information (higher road network)
- static parking info
- static public transport information
- walking information

Core Service

- dynamic road traffic information (secondary road network)
- dynamic PT info
- dynamic PT journey routing
- dynamic parking info
- enhanced walking planning
- dynamic cycling planning

Add-on Service

- dynamic freight traffic information
- dynamic POI info
- dynamic traffic event information
- dynamic weather information
- static and dynamic flight information

B2B Services

- The ownership of data is with the regional infrastructure operator.
- Transport Information Service Provider (TISPs) will be the users of B2B Services, offering their customers interoperable und multimodal RTTI Services (individual customised).
- Clear definition of data/services to be exchanged.
- Elaboration of "Terms of Use" (incl. cost model)

B2C Services

B2C Services can be divided into two major groups:

- o e-services will influence the on-trip travel behaviour by optimising journeys taking the energy consumption into account. The community will be the users of mobile devices or a navigational device.
- Internet based pre-trip information can influence travel behaviour.

Operating Traffic Management for reducing the amount of energy needed:

- reducing traffic congestions in all modes (efficient and intermodal operating traffic management solution for more fluent traffic)
- enabling intermodal real-time on- and pre-trip information, to result in intelligent decisions of the traveller and lower energy consumption
- lowering energy consumption drastically by the introduction of modern technologies like the adoption of LED technology for signal heads.

Functionalities and benefits for users, operators and providers

- Users: receive in each In-Time city requested relevant realtime intermodal travel information on their favourite tool and HMI.
- Operators (cities): install a single distribution channel for dynamic traffic information transmission to all user groups.
 - => support for strategy based routing
- TISP: generate and deliver high quality information services to targeted user groups.

Expected impacts on travel behaviour

- o modal shift away from individual traffic: around 3%, as private users will be enabled to compare transport modes and make a choice.
- o improved customer acceptance of PT operation.
- o a positive impact on improved safety, efficiency and competitiveness of transport systems across European cities, with the objective of reducing road fatalities by 50% in EU-27 by 2010.
- higher mobility of people and goods across different transport modes through the provision of accessible and reliable information services.

Expected impacts on the environment

- providing intermodal real-time traffic information for a better selection of the travel mode towards greener transport modes.
- o reducing the following emissions through an improved traffic management system:
 - pollutants and CO₂ Emissions,
 - particle emissions, noise
- lowering energy consumption by
 - optimising traffic control (Eco-flow),
 - enhancing the product life-cycle
 - reducing power consumption by using LED technologies

Partners

22 partners from 9 EU countries, incl. AustriaTech

Universitatea "POLITEHNICA" din București
Centrul de Cercetare, Proiectare, Service și Consulting în
Domeniul Telecomenzi și Electronică în Transporturi
UPB-CEPETET

Contact Information

Martin Böhm

AustriaTech

Gesellschaft des Bundes für technologiepolitische Maßnahmen GmbH Federal Agency for Technological Measures Ltd.

Email: martin.boehm@austriatech.org

www.austriatech.org

www.in-time-project.eu

