Automation-Ready Framework

Bernard Gyergyay - Rupprecht Consult

City and Transport Planning Goals

Wichtigste Ziele der Stadt- und Verkehrsplanung

- Support non motorised transport
- Support PT
- Reduce motorised transport and travel times
- Reduce energy consumption
- Support intermodality

www.h2020-coexist.eu

Improve safety

Negative 17 Negative 12 Neutral 11 11 Neutral B Negative 11 Positive 10

Pro Teilnehmer (n=21) waren fünf Nennungen möglich.

Uncertainties for Local Authorities

- Current hype creates unrealistic expectations of the technology (pro-innovation bias)
- Timeframe is unrealistic: level 5 sharing systems are still far away vs. whereas level 4 PT with adjusted infrastructure is possible.
- (Connected) Infrastructure requirements are not clearly formulated yet.
- Long transition phase where conventional vehicles coexist with partially and fully automated vehicles.
- Unclear how later (as well as first) generations of vehicles at different automation levels will behave
- Unclear impacts: at which point will vehicle kilometres increase or decrease?
- Result of uncertainties →
- CAVs are not mentioned in SUMPs or other strategic transport planning documents

CoEXist in brief

• Objective:

- The mission of the H2020 CoEXist project is to systematically increase the capacity of local authorities and other urban mobility stakeholders to get ready for the transition towards a shared road network with increasing levels of connected and automated vehicles (CAVs)
- Automation-Ready:
 - Micro- and Macroscopic Transport Modelling
 - Hybrid Road Infrastructure
 - Local Transport Policies

Project Details

- Programme: EU H2020-ART05
- Duration: May 2017 April 2020
- Total Budget: 3,474,065 €
- Strategic Aim:
 - To bridge the gap between automated vehicles (AVs) technology and transportation and infrastructure planning by strengthening the capacities of urban road authorities and cities to plan for the integration of AVs on the same network.
- Partners:
 - 16 partners from 7 European countries (Belgium, France, Italy, Germany, Netherlands, Sweden and UK).

Project Partners

Automation-Ready Modelling: CAV-Driver Behaviour

Connecting CAV control logic, sensor simulator and traffic simulator

Default CAV-behavioural parameters sets

	SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	<i>Monitoring</i> of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (Driving Modes)
	Huma	<i>n driver</i> monito	ors the driving environment				
fault V-behavioural rameter sets	0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
	1	Driver Assistance	the <i>driving mode</i> -specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human driver	Human driver	Some driving modes
	2	Partial Automation	the <i>driving mode</i> -specific execution by one or more driver assistance systems of both steering and acceleration/ deceleration using information about the driving environment and with the expectation that the <i>human</i> <i>driver</i> perform all remaining aspects of the <i>dynamic driving</i> <i>task</i>	System	Human driver	Human driver	Some driving modes
	Autor	nated driving s	ystem ("system") monitors the driving environment				
	3	Conditional Automation	the <i>driving mode</i> -specific performance by an <i>automated</i> <i>driving system</i> of all aspects of the dynamic driving task with the expectation that the <i>human driver</i> will respond appropriately to a <i>request to intervene</i>	System	System	Human driver	Some driving modes
	4	High Automation	the <i>driving mode</i> -specific performance by an automated driving system of all aspects of the <i>dynamic driving task</i> , even if a <i>human driver</i> does not respond appropriately to a <i>request to intervene</i>	System	System	System	Some driving modes
	5	Full Automation	the full-time performance by an <i>automated driving system</i> of all aspects of the <i>dynamic driving task</i> under all roadway and environmental conditions that can be managed by a <i>human driver</i>	System	System	System	All driving modes

Copyright © 2014 SAE International. The summary table may be freely copied and distributed provided SAE International and J3016 are acknowledged as the source and must be reproduced AS-IS.

De[®] CA[®]

pa

CoEXist Use Cases

Accessibility during long-term construction works

Shared Space

Gothenburg (VTI)

Helmond (TASS)

Legend:

Transition from interurban highway to arterial

Signalised intersection including pedestrians and cyclists

Microscopic

Macroscopic

CoEXist Use Cases

Loading and unloading areas for freight

Waiting and drop-off areas for passengers

Milton Keynes (University of Cambridge)

Stuttgart (University of Stuttgart)

Impacts of CAVs on travel time and mode choice on a network level

Legend:

Microscopic

Macroscopic

www.h2020-coexist.eu

ridesharing services

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723201

Impact of driverless car- and

Automation-Ready Local Authorities

- CoEXist Automation-Ready framework
- Guidance on issues like technology, impacts and measures
- Clear-headed and informed decisions
 about automation
- Automation FAQ for cities
- Automation-ready action plans:
- Bottom-up local stakeholder process

 Automation-ready Fora
- Action Plan: Now, 5 years, 10 years
- Annex to strategic transport plans (e.g. SUMPs)

Automation-Ready Local Authorities

- Stakeholder engagement with over 30 cities
 - Definition "Automation-Ready"

Automation-Ready Local Authorities

- Stakeholder engagement with over 30 cities
 - Definition "Automation-Ready"
 - Vision / Mobility Goals for "Automation-Ready" (e.g. CIVITAS Declaration)
 - "SAE levels" don't work for urban transport policy making
 - "Automation-Ready" Measures and Actions

Cleaner and better transport in cities

2030? #Automation -ready CIVITAS

www.h2020-coexist.eu

Automation-ready measures to be taken in the next 15 years

Mobility aspect	0-5 years	5-10 years	10-15 years
Policy	Liveability needs to remain as the top priority Support testing activities and research incl. legal and regulatory activities	Incorporation of CAVs into city mobility goals Mobility pricing for "SPAM" roaming cars Avoid segregation or prioritisation of CAVs over public transport and active modes	Taxation changes for mobility (Potential) area and vehicle occupancy based road pricing
Infrastructure	Preparation of physical and digital infrastructure Digital infrastructure needs to transition to open access	Reallocation of on-street parking to green and public spaces	Land use changes Modifications to infrastructure and accompanying traffic code (e.g. lane markings, minor changes of infrastructure designs, speed limits, lane width)
Planning	Proactive planning Planning for adaptability and flexibility to technology Stakeholder engagement process to encourage cross-sectoral collaboration and coordination	Update travel demand models and evaluate road capacity needs Assess public transport plans and fleet requirements considering CAV first and last mile solutions Integration of solutions in mobility: electric, intelligent, automated, shared, inclusive	Integration of solutions in mobility: electric, intelligent, automated, shared, inclusive Assessment of required land use changes based on integrated land use and transport modelling tools
Capacity Building for Transport Authorities	Stay educated on mobility technology progress	Reassessment of strategic mobility plans; incorporating new mobility forms	Training for traffic management and public transport operations Restructuring of internal departments (e.g. information technology department, Mobility as a Service (MaaS) department)
Traffic Management 14	Road authorities need to be more involved in the discussion	Back office for data exchange in traffic management	Defining data management responsibility with new management schemes New schemes of deploying municipal services, maintenance and logistics traffic at night in the urban area if autonomous functionality is available

Conclusion

- Urban transport policy making needs to be addressed first before automation-ready infrastructure can be deployed
- Cities need to develop a vision about automation (what do we want from it?)
- Multi-stakeholder process, e.g. online survey
- Automation needs to be defined from a policy perspective, and not from a SAE perspective.

Thank you for listening

RUPPRECHT CONSULT

Forschung & Beratung GmbH

Bernard Gyergyay b.gyergyay@rupprecht-consult.eu

#H2020CoEXist @H2020_CoEXist

16

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723201-2 The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.