

XCYCLE's innovative measures to increase cycling safety: Infrastructure and human factors

Federico Fraboni^a, Luca Pietrantoni^a, Kay Gimm^b, Mandy Dotzauer^b, Marco De Angelis^a, Gabriele Prati^a

^a Department of Psychology, Alma Mater Studiorum, University of Bologna, Via Berti Pichat 5, 40126, Bologna, Italy

b Deutsches Zentrum für Luft und Raumfahrt, German Aerospace Center, Lilienthalplatz 7, D - 38108 Braunschweig, Germany

DLR

22-23 November 2018, Manchester

Outline

- Cyclists fatalities in Europe
- The **XCYCLE** project
- XCYCLE results
- Conclusions and open issues

Cyclists' fatalities in Europe

- 2.015 cyclists fatalities on EU roads in 2016 (+0,3% in respect to 2015)
- 58% inside urban areas
- 20% F and 80% M

28% of all bicycle fatalities happens at **junctions**

European Commission. (2018). Traffic Safety Basic Facts on Cyclists. European Commission, Directorate General for Transport.

XCYCLE:

Advanced measures to reduce cyclists' fatalities and increase their comfort in the interaction with motorised vehicles

This project has received funding from the [European Union's Horizon 2020 research and innovation programme under grant agreement No 723970

HORIZON 2020

The EU Framework Programme for Research and Innovation

#1: Traffic safety analysis

- Analysed main factors contributing to Bicycle-Motorised Vehicle (B-MV) collisions.
- Identified key features of cyclist crashes using latent class analysis and association rule mining (data on B-MV crashes from 10 European Countries)
- Employed decision tree technique to assess the relationship between severity of bicycle crashes and specific factors

- Prati, G., Marín Puchades, V., De Angelis, M., Fraboni, F., & Pietrantoni, L. (2017). Factors contributing to bicycle–motorised vehicle collisions: a systematic literature review. *Transport Reviews*, 1-25
- Prati, G., De Angelis, M., Puchades, V. M., Fraboni, F., & Pietrantoni, L. (2017). Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining. *PLoS one*, 12(2), e0171484.
- Prati, G., Pietrantoni, L., & Fraboni, F. (2017). Using data mining techniques to predict the severity of bicycle crashes. *Accident Analysis & Prevention*, 101, 44-54.

CLASS 1

HORTZON 2020

#2: Road users' behaviour analysis

- Analysed errors and violations among cyclists and how traffic infrastructures might reduce unsafe behaviours
- The role of perceived competence, risk perception, unsafe behaviours and cyclists' anger in cycling near misses
- How journey attributes and the evaluation of motorists' behavior affect crash occurrence and severity

Fraboni, F., Puchades, V. M., De Angelis, M., Pietrantoni, L., & Prati, G. (2018). Red-light running behavior of cyclists in Italy: An observational study. Accident Analysis & Prevention, 120, 219-232.

Puchades, V. M., Fassina, F., Fraboni, F., De Angelis, M., Prati, G., de Waard, D., & Pietrantoni, L. (2018). The role of perceived competence and risk perception in cycling near misses. Safety science, 105, 167-177.

Marín Puchades, V., Prati, G., Rondinella, G., De Angelis, M., Fassina, F., Fraboni, F., & Pietrantoni, L. (2017). Cyclists' Anger As Determinant of Near Misses Involving Different Road Users. Frontiers in psychology, 8, 2203.

#3: HMI and acceptance of ITS

- A driving simulator in Leeds has been programmed with common cycle-to-truck conflict scenarios.
- A set of HMI recommendations has been derived covering both visual and acoustic aspects.
- We identified major determinants of acceptance of PCDS + EBR and Onbike collision warning system with prototypes

De Angelis, M., Puchades, V. M., Fraboni, F., Pietrantoni, L., & Prati, G. (2017). Negative attitudes towards cyclists influence the acceptance of an in-vehicle cyclist detection system. Transportation Research Part F: Traffic Psychology and Behaviour, 49, 244-256.

Prati, G., Puchades, V. M., De Angelis, M., Pietrantoni, L., Fraboni, F., Decarli, N., ... & Dardari, D. (2018).

Evaluation of user behavior and acceptance of an on-bike system. Transportation research part F: traffic psychology and behaviour, 58, 145-155.

Negative impact on the potential safety effect of a ITS system by overreliance, distraction or annoyance of the system

#4: in-vehicle and on-bike system

 In-truck Cyclists blind spot detection and collision warning

On-bike UWB localization and collision warning system

The EU Framework Programme for Research and Innovation

HORTZON 2020

#5: Infrastructure-based systems

- Adaptive traffic controller algorithm in "green wave for cyclists" in Groningen
- TraffiTowers in Braunschweig, extracting video recordings and trajectory data with real time risk assessment.
- Amber light: We predict critical situations between right-turning motorists and crossing cyclists then send signal with different level of criticality

Knake-Langhorst, S., Gimm, K., Frankiewicz, T., & Köster, F. (2016). Test Site AIM–Toolbox and enabler for applied research and development in traffic and mobility. Transportation Research Procedia, 14, 2197-2206.

Saul, H., Junghans, M., Gimm, K. (2018) Risk Estimation of Interactions of Right Turning Vehicles and Vulnerable Road Users. In: WIT Transactions. WIT Press. 11th International Conference on Risk Analysis and Hazard Mitigation, 06-08. Jun. 2018, Sevilla, Spain.

Gimm, K., Knake-Langhorst, S. (2018) <u>Increasing cycling safety by an adaptively triggered road instrumented warning element in EU project XCYCLE.</u> Transport Research Arena TRA2018, 16.-19. Apr. 2018, Vienna, Austria.

Gimm, Kay., Knake-Langhorst, S., Dotzauer, M., Urban, U., Arndt, R. (2016) <u>Increasing cyclist safety with infrastructural supported cooperative ADAS in EU XCYCLE by extending test site AIM Research Intersection.</u> International Cycling Safety Conference 2016, 03.-04. Nov. 2016, Bologna, Italy.

#6: Integration and evaluation of the systems

- **Braunschweig**: behavioural evaluation at the AIM intersection with different users
- **Groningen**: observation of cyclists behaviour, assessment of gaze behaviour
- Multi-country study on "Willingness to pay" among European cyclists (N = 2381)
- Qualitative study with truck drivers and cyclists on XCYCLE systems (using VR)
- Cost-benefit analysis to give a broad perspective of the project impact

Successful integration and testing activities in Braunschweig!

Conclusions

- Innovative and cost-effective solutions
 - → to promote sustainable mobility
 - → Need to find way to support large scale deployment (business cases, new vehicle standards, ...)
- Complete segregation (expensive and unfeasible) < Social integration and inclusion (e. g. urban shared spaces). Technology can support it.
- Grouping and platooning cyclists through traffic control systems (e.g., green waves)
 - increase safety and reduce unsafe behaviours.
- Trust, perceived safety, and attitude toward technology → most important correlates

of behavioral intention to use the systems

Open issues and next steps

- A constantly evolving road environment:
- New vehicles (PMV, electric, connected and automated, ...)
- Need to pro-actively define new interactions between road users (e.g. VRUs and AVs)
 →VRUs risks to be neglected.
- Address underreported and under-investigated dangerous traffic situations (e.g. nearmisses)

Adopting a pro-active strategy

measures and not counter-measures.

Need to adopt "evidence-based" SPI (safety performance indicators) to:

→ Increase transparancy

Need to strenghten co-operation between all stakeholders (asset-management, municipalities, police, schools, ...)

Thanks for your attention!

www.xcycle-h2020.eu

Federico Fraboni

federico.fraboni3@unibo.it

Prof. Luca Pietrantoni

luca.Pietrantoni@Unibo.it

